Source code for psychopy_visionscience.noise

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""Stimulus object for drawing arbitrary bitmap carriers with an arbitrary
second order envelope carrier and envelope can vary independently for
orientation, frequencyand phase. Also does beat stimuli. """

# Part of the PsychoPy library
# Copyright (C) 2002-2018 Jonathan Peirce (C) 2019-2022 Open Science Tools Ltd.
# some code provided by Andrew Schofield
# Distributed under the terms of the GNU General Public License (GPL).

# Requires shaders if you don't have them it will just throw and error.
# Ensure setting pyglet.options['debug_gl'] to False is done prior to any
# other calls to pyglet or pyglet submodules, otherwise it may not get picked
# up by the pyglet GL engine and have no effect.
# Shaders will work but require OpenGL2.0 drivers AND PyOpenGL3.0+

import pyglet
pyglet.options['debug_gl'] = False
GL = pyglet.gl
try:
    from PIL import Image
except ImportError:
    import Image

import psychopy  # so we can get the __path__
from psychopy.visual import filters
from psychopy.tools.attributetools import attributeSetter
from psychopy.visual.grating import GratingStim
import numpy
from numpy import exp
from numpy.fft import fft2, ifft2, fftshift, ifftshift

from psychopy.visual import shaders as _shaders


[docs] class NoiseStim(GratingStim): """A stimulus with 2 textures: a random noise sample and a mask **Example**:: noise1 = noise = visual.NoiseStim( win=win, name='noise',units='pix', noiseImage='testImg.jpg', mask='circle', ori=1.0, pos=(0, 0), size=(512, 512), sf=None, phase=0, color=[1,1,1], colorSpace='rgb', opacity=1, blendmode='add', contrast=1.0, texRes=512, filter='None', imageComponent='Phase' noiseType='Gabor', noiseElementSize=4, noiseBaseSf=32.0/512, noiseBW=1.0, noiseBWO=30, noiseFractalPower=-1,noiseFilterLower=3/512, noiseFilterUpper=8.0/512.0, noiseFilterOrder=3.0, noiseClip=3.0, filter=False, interpolate=False, depth=-1.0) # gives a circular patch of noise made up of scattered Gabor elements with peak frequency = 32.0/512 cycles per pixel, # orientation = 0 , frequency bandwidth = 1 octave and orientation bandwidth 30 degrees **Types of noise available** * Binary, Normal, Uniform - pixel based noise samples drawn from a binary (blank and white), normal or uniform distribution respectively. Binary noise is always exactly zero mean, Normal and Uniform are approximately so. Parameters: * noiseElementSize - (can be a tuple) defines the size of the noise elements in the components units. * noiseClip the values in normally distributed noise are divided by noiseClip to limit excessively high or low values. However, values can still go out of range -1 to 1 whih will throw a soft error message high values of noiseClip are recommended if using 'Normal' * **Gabor**, **Isotropic**: Effectively a dense scattering of Gabor elements with random amplitude and fixed orientation for Gabor or random orientation for Isotropic noise. In practice the desired amplitude spectrum for the noise is built in Fourier space with a random phase spectrum. DC term is set to zero - ie zero mean. Parameters: * noiseBaseSf - centre spatial frequency in the component units. * noiseBW - spatial frequency bandwidth full width half height in octaves. * ori - center orientation for Gabor noise (works as for gratingStim so twists the final image at render time). * noiseBWO - orientation bandwidth for Gabor noise full width half height in degrees. * noiseOri - alternative center orientation for Gabor which sets the orientation during the image build rather than at render time. Useful for setting the orientation of a filter to be applied to some other noise type with a different base orientation. * **Filtered** - A white noise sample that has been filtered with a low, high or bandpass Butterworth filter. The initial sample can have its spectrum skewed towards low or high frequencies. The contrast of the noise falls by half its maximum (3dB) at the cutoff frequencies. Parameters: * noiseFilterUpper - upper cutoff frequency - if greater than texRes/2 cycles per image low pass filter used. * noiseFilterLower - Lower cutoff frequency - if zero low pass filter used. * noiseFilterOrder - The order of the filter controls the steepness of the falloff outside the passband is zero no filter is applied. * noiseFractalPower - spectrum = f^noiseFractalPower - determines the spatial frequency bias of the initial noise sample. 0 = flat spectrum, negative = low frequency bias, positive = high frequency bias, -1 = fractal or brownian noise. * noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that requested by contrast parameter while keeping pixel values in range -1, 1. * **White** - A short cut to obtain noise with a flat, unfiltered spectrum. In practice the desired amplitude spectrum is built in the Fourier Domain with a random phase spectrum. DC term is set to zero - ie zero mean Note despite name the noise contains all grey levels. Parameters: * noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that requested by contrast parameter while keeping pixel values in range -1, 1. * **Image**: A noise sample whose spatial frequency spectrum is taken from the supplied image. In practice the desired amplitude spectrum is taken from the image and paired with a random phase spectrum. DC term is set to zero - ie zero mean. Parameters: * noiseImage name of ndarray or image file from which to take spectrum - should be same size as largest side requested for component if units is pix or texRes x texRes otherwise * imageComponent: 'Phase' randomizes the phase spectrum leaving the amplitude spectrum untouched. 'Amplitude' randomizes the amplitude spectrum leaving the phase spectrum untouched - retains spatial structure of image. 'Neither' keeps the image as is - but you can now apply a spatial filter to the image. * noiseClip - determines clipping values and rescaling factor such that final rms contrast is close to that requested by contrast parameter while keeping pixel values in range -1, 1. **Filter parameter** * Butterworth: a spectral filter defined by the filtered noise parameters will be applied to the other noise types. * Gabor: a spectral filter defined by the Gabor noise parameters will be applied to the other noise types. * Isotropic: then a spectral filter defined by the Isotropic noise parameters will be applied to the other noise types. **Updating noise samples and timing** The noise is rebuilt at next call of the draw function whenever a parameter starting 'noise' is notionally changed even if the value does not actually change every time. eg. setting a parameter to update every frame will cause a new noise sample on every frame but see below. A rebuild can also be forced at any time using the buildNoise() function. The updateNoise() function can be used at any time to produce a new random saple of noise without doing a full build. ie it is quicker than a full build. Both buildNoise and updateNoise can be slow for large samples. Samples of Binary, Normal or Uniform noise can usually be made at frame rate using noiseUpdate. Updating or building other noise types at frame rate may result in dropped frames. An alternative is to build a large sample of noise at the start of the routien and place it off the screen then cut a samples out of this at random locations and feed that as a numpy array into the texture of a visible gratingStim. **Notes on size** If units = pix and noiseType = Binary, Normal or Uniform will make noise sample of requested size. If units = pix and noiseType is Gabor, Isotropic, Filtered, White, Coloured or Image will make square noise sample with side length equal that of the largest dimetions requested. if units is not pix will make square noise sample with side length equal to texRes then rescale to present. **Notes on interpolation** For pixel based noise interpolation = nearest is usually best. For other noise types linear is better if the size of the noise sample does not match the final size of the image well. **Notes on frequency** Frequencies for cutoffs etc are converted between units for you but can be counter intuitive. 1/size is always 1 cycle per image. For the sf (final spatial frequency) parameter itself 1/size (or None for units pix) will faithfully represent the image without further scaling. Filter cuttoff and Gabor/Isotropic base frequencies should not be too high you should aim to keep them below 0.5 c/pixel on the screen. The function will produce an error when it can't draw the stimulus in the buffer but it may still be wrong when displayed. **Notes on orientation and phase** The ori parameter twists the final image so the samples in noiseType Binary, Normal or Uniform will no longer be aligned to the sides of the monitor if ori is not a multiple of 90. Most other noise types look broadly the same for all values of ori but the specific sample shown can be made to rotate by changing ori. The dominant orientation for Gabor noise is determined by ori at render time, not before. The phase parameter similarly shifts the sample around within the display window at render time and will not choose new random phases for the noise sample. """ def __init__(self, win, mask="none", units="", pos=(0.0, 0.0), size=None, sf=None, ori=0.0, phase=(0.0, 0.0), noiseType=None, noiseElementSize=16, noiseBaseSf=1, noiseBW=1, noiseBWO=30, noiseOri=0, noiseFractalPower=0.0, noiseFilterUpper=50, noiseFilterLower=0, noiseFilterOrder=0.0, noiseClip=1, noiseImage=None, imageComponent='Phase', filter=None, texRes=128, rgb=None, dkl=None, lms=None, color=(1.0, 1.0, 1.0), colorSpace='rgb', contrast=0.5, # see doc opacity=1.0, depth=0, rgbPedestal=(0.0, 0.0, 0.0), interpolate=False, blendmode='avg', name=None, autoLog=None, autoDraw=False, maskParams=None): """ """ # Empty docstring. All doc is in attributes # what local vars are defined (these are the init params) for use by # __repr__ self._initParams = dir() if noiseType is None: msg = ('noiseType not recognized. Valid types are: \n' 'binary, uniform, normal, white, filtered, gabor, ' 'isotropic, or image.') raise ValueError(msg) elif noiseType == 'image' and noiseImage is None: msg = ('You need to supply an image via the noiseImage keyword ' 'argument.') raise ValueError(msg) for unecess in ['self', 'rgb', 'dkl', 'lms']: self._initParams.remove(unecess) # initialise parent class GratingStim.__init__(self, win, tex='sin', units=units, pos=pos, size=size, sf=sf, ori=ori, phase=phase, color=color, colorSpace=colorSpace, contrast=contrast, opacity=opacity, depth=depth, interpolate=interpolate, name=name, autoLog=autoLog, autoDraw=autoDraw, blendmode=blendmode, maskParams=None) # UGLY HACK: Some parameters depend on each other for processing. # They are set "superficially" here. # TO DO: postpone calls to _createTexture, setColor and # _calcCyclesPerStim whin initiating stimulus self.__dict__['mask'] = mask self.__dict__['maskParams'] = maskParams self.blendmode=blendmode self.mask = mask self.texRes=int(texRes) self.noiseType=noiseType self.noiseImage=noiseImage self.imageComponent=imageComponent self.noiseElementSize=noiseElementSize self.noiseBaseSf=float(noiseBaseSf) self.noiseBW=float(noiseBW) self.noiseBWO=float(noiseBWO) self.noiseOri=float(noiseOri) self.noiseFractalPower=float(noiseFractalPower) self.noiseFilterUpper=float(noiseFilterUpper) self.noiseFilterLower=float(noiseFilterLower) self.noiseFilterOrder=float(noiseFilterOrder) if noiseClip != 'none': self.noiseClip=float(noiseClip) else: self.noiseClip=noiseClip self.filter = filter self.local = numpy.ones((texRes, texRes), dtype=numpy.ubyte) self.local_p = self.local.ctypes self._sideLength=1.0 self._mysize=512 # in unlikely case where it does not get set anywhere else before use. self.buildNoise() self._needBuild = False @attributeSetter def noiseType(self, value): """Type of noise to generate 'Binary, Normal and Uniform' produce pixel based random samples from the indicated distribitions. Binary has zero mean lumiannce, Normal and Uniform approximate this. 'Gabor and Isotropic' produce dense, random scatterd Gabor elements with fixed (Gabor) or random (Isotropic) orientations. Zero mean lumiannce. 'White' produces white noise with a flat amplitude spectrum. Zero mean lumiannce. 'Filtered' Produces white noise filtered by a low-, high- or band-pass filter. Zero mean lumiannce. Use the noiseFractalPower attribute to skew the spectrum of filtered noise. 'Image' produces noise with the same spectrum as the supplied image but with mean lumiance set to zero. """ self.__dict__['noiseType'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseImage(self, value): """Image from which to derive the amplitude or phase spectrum of noise type Image. """ self.__dict__['noiseImage'] = value self._needUpdate = True self._needBuild = True @attributeSetter def imageCompoment(self, value): """Which component of an image to randomise, amplitude or phase. """ self.__dict__['imageComponent'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseElementSize(self, value): """Noise element size for Binary, Normal or Uniform noise. In the units of the stimulus. """ self.__dict__['noiseElementSize'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseBaseSf(self, value): """Spatial frequency for Gabor or Isotropic noise in cycles per unit. Eg c/deg if units = degrees. """ self.__dict__['noiseBaseSf'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseBW(self, value): """Spatial frequency bandwidth for Gabor or Isotropic noise, full width at half height in octaves. """ self.__dict__['noiseBW'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseBWO(self, value): """Orientation bandwidth for Gabor noise, full width at half height in degrees """ self.__dict__['noiseBWO'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseFractalPower(self, value): """Exponent for 'coloured' noise. Amplitide spectrum = f^noiseFractalPower. -1 gives pink noise. Note power spectrum of a pink noise image should fall as f^-2. But as power spectrum = amplitude spectrum squared this is achieved by setting amplitude spectrum to f^-1. """ self.__dict__['noiseFractalPower'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseFilterUpper(self, value): """Upper cuttoff for filtered noise. In cycles/unit eg c/deg when units is degrees. > size/2 creates high pass filter. """ self.__dict__['noiseFilterUpper'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseFilterLower(self, value): """Lower cuttoff for filtered noise. In cycles/unit eg c/deg when units is degrees. Zero creates low pass filter. """ self.__dict__['noiseFilterLower'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseFilterOrder(self, value): """Order of Butterworth filter for filtered noise. High = fast fall off withfrequency outside pass band. """ self.__dict__['noiseFilterOrder'] = value self._needUpdate = True self._needBuild = True @attributeSetter def noiseClip(self, value): """Ignored for types 'Binary and Uniform'. For 'Normal' noise pixel values are divided by noiseClip to limit the standard deviation of the noise values. For all other noise types noiseClip determines the level at which pixel values are cliped and subsequently re-scaled so as to produce a final image appraching the desired RMS contrast. High values will tend to reduce the ultimate RMS contrast but increase fidelity of appearance. Low values prioritise accurate final contrast but result in a binarised or thresholded appearance. noiseClip is used to scale the luminance values as above whenever a filter is applied to the noise sample, regardless of the initial type of noise requested. """ self.__dict__['noiseClip'] = value self._needUpdate = True self._needBuild = True
[docs] def setNoiseOri(self, value): self.noiseOri = value
@attributeSetter def filter(self, value): """If True apply spatial frequency filter to noise.""" self.__dict__['filter'] = value self._needUpdate = True self._needBuild = True @attributeSetter def texRes(self, value): """Power-of-two int. Sets the resolution of the mask and texture. maybe used as the side length for generating the noise texture but is not used if units = pix. :ref:`Operations <attrib-operations>` supported. """ self.__dict__['texRes'] = value # ... now rebuild textures (call attributeSetters without logging). self._needUpdate = True self._needBuild = True if hasattr(self, 'tex'): self._set('tex', self.tex, log=False) if hasattr(self, 'mask'): self._set('mask', self.mask, log=False)
[docs] def setTexRes(self, value, log=None): self._set('texRes', value, log=log)
[docs] def setNoiseType(self, value, log=None): self._set('noiseType', value, log=log)
[docs] def setNoiseImage(self, value, log=None): self._set('noiseImage', value, log=log)
[docs] def setImageCompoment(self, value, log=None): self._set('imageCompoment',value, log=log)
[docs] def setNoiseClip(self, value, log=None): self._set('noiseClip', value, log=log)
[docs] def setFilter(self, value, log=None): self._set('filter', value, log=log)
[docs] def setNoiseElementSize(self, value, log=None): self._set('noiseElementSize', value, log=log)
[docs] def setNoiseBaseSf(self, value, log=None): self._set('noiseBaseSf', value, log=log)
[docs] def setNoiseBW(self, value, log=None): self._set('noiseBW', value, log=log)
[docs] def setNoiseBWO(self, value, log=None): self._set('noiseBWO', value, log=log)
[docs] def setNoiseFractalPower(self, value, log=None): self._set('noiseFractalPower', value, log=log)
[docs] def setNoiseFilterUpper(self, value, log=None): self._set('noiseFilterUpper', value, log=log)
[docs] def setNoiseFilterLower(self, value, log=None): self._set('noiseFilterLower', value, log=log)
[docs] def setNoiseFilterOrder(self, value, log=None): self._set('noiseFilterOrder', value, log=log)
[docs] def setblendMode(self, value, log=None): self._set('blendMode', value, log=log)
[docs] def draw(self, win=None): """Draw the stimulus in its relevant window. You must call this method after every MyWin.flip() if you want the stimulus to appear on that frame and then update the screen again. """ if win is None: win = self.win saveBlendMode = win.blendMode win.setBlendMode(self.blendmode, log=False) self._selectWindow(win) #do scaling GL.glPushMatrix() # push before the list, pop after win.setScale('pix') #the list just does the texture mapping GL.glColor4f(*self._foreColor.render('rgba1')) # re-build the noise if not done so since last parameter update if self._needBuild: self.buildNoise() # remake textures if necessary if self._needTextureUpdate: self.setTex(value=self.tex, log=False) if self._needUpdate: self._updateList() GL.glCallList(self._listID) #return the view to previous state GL.glPopMatrix() win.setBlendMode(saveBlendMode, log=False)
def _filter(self, FT): """ Helper function to apply Butterworth filter in frequensy domain. """ filterSize = numpy.max(self._mysize) pin=filters.makeRadialMatrix(matrixSize=filterSize, center=(0,0), radius=1.0) pin[int(filterSize / 2)][int(filterSize / 2)] = 0.00000001 # Prevents divide by zero error. This is DC and is set to zero later anyway. FT = numpy.multiply(FT,(pin) ** self.noiseFractalPower) if self.noiseFilterOrder > 0.01: if self._upsf<(filterSize/2.0): filter = filters.butter2d_lp_elliptic(size = [filterSize,filterSize], cutoff_x = self._upsf / filterSize, cutoff_y = self._upsf / filterSize, n=self.noiseFilterOrder, alpha=0, offset_x = 0.5/filterSize, #because FFTs are slightly off centred. offset_y = 0.5/filterSize) else: filter = numpy.ones((int(filterSize),int(filterSize))) if self._lowsf > 0: if self._lowsf > filterSize/2: msg = ('Lower cut off frequency for filtered ' 'noise is too high (exceeds Nyquist limit).') raise Warning(msg) filter = filter-filters.butter2d_lp_elliptic(size = [filterSize,filterSize], cutoff_x = self._lowsf / filterSize, cutoff_y = self._lowsf / filterSize, n = self.noiseFilterOrder, alpha = 0, offset_x = 0.5/filterSize, #because FFTs are slightly off centred. offset_y = 0.5/filterSize) return FT * filter else: return FT def _isotropic(self, FT): """ Helper function to apply isotropic filter in frequensy domain. """ _sf=numpy.max(self._sf) _mysize=numpy.max(self._mysize) # self._sf and self._mysize can be a tuple which causes issues # but we can only filer sqaure images anyway so taking max here is OK becuase # the two elements in the tuple must be the same at this point if _sf > _mysize / 2: msg = ('Base frequency for isotropic ' 'noise is too high (exceeds Nyquist limit).') raise Warning(msg) localf = _sf / _mysize linbw = 2 ** self.noiseBW lowf = 2.0 * localf / (linbw+1.0) highf = linbw * lowf FWF = highf - lowf sigmaF = FWF / (2*numpy.sqrt(2*numpy.log(2))) pin = filters.makeRadialMatrix(matrixSize=_mysize, center=(0,0), radius=2) filter = filters.makeGauss(pin, mean=localf, sd=sigmaF) return FT*filter def _gabor(self, FT): """ Helper function to apply Gabor filter in frequensy domain. """ _sf=numpy.max(self._sf) _mysize=numpy.max(self._mysize) # self._sf and self._mysize can be a tuple which causes issues # but we can only filer sqaure images anyway so taking max here is OK becuase # the two elements in the tuple must be the same at this point if _sf > _mysize / 2: msg = ('Base frequency for Gabor ' 'noise is too high (exceeds Nyquist limit).') raise Warning(msg) localf = _sf / _mysize linbw = 2 ** self.noiseBW lowf = 2.0 * localf / (linbw + 1.0) highf = linbw * lowf FWF = highf - lowf sigmaF = FWF/(2*numpy.sqrt(2*numpy.log(2))) FWO = 2.0*localf*numpy.tan(numpy.pi*self.noiseBWO/360.0) sigmaO = FWO/(2*numpy.sqrt(2*numpy.log(2))) yy, xx = numpy.mgrid[0:_mysize, 0:_mysize] xx = (0.5 - 1.0 / _mysize * xx) yy = (0.5 - 1.0 / _mysize * yy) filter=filters.make2DGauss(xx,yy,mean=(localf,0), sd=(sigmaF,sigmaO)) filter=filter+filters.make2DGauss(xx,yy, mean=(-localf,0), sd=(sigmaF,sigmaO)) filter = numpy.array( Image.fromarray(filter).rotate( self.noiseOri, Image.BICUBIC ) ) return FT*filter
[docs] def updateNoise(self): """Updates the noise sample. Does not change any of the noise parameters but choses a new random sample given the previously set parameters. """ if not(self.noiseType in ['binary','Binary','normal','Normal','uniform','Uniform']): if (self.noiseType in ['image', 'Image']) and (self.imageComponent in ['amplitude','Amplitude']): self.noiseTex = numpy.random.uniform(0,1,int(self._mysize**2)) self.noiseTex = numpy.reshape(self.noiseTex,(int(self._mysize),int(self._mysize))) if self.filter in ['Butterworth','butterworth']: self.noiseTex = fftshift(self._filter(self.noiseTex)) elif self.filter in ['Gabor','gabor']: self.noiseTex = fftshift(self._gabor(self.noiseTex)) elif self.filter in ['Isotropic','isotropic']: self.noiseTex = fftshift(self._isotropic(self.noiseTex)) self.noiseTex[0][0] = 0 In = self.noiseTex * exp(1j*self.noisePh) Im = numpy.real(ifft2(In)) else: Ph = numpy.random.uniform(0,2*numpy.pi,int(self._mysize**2)) Ph = numpy.reshape(Ph,(int(self._mysize),int(self._mysize))) In = self.noiseTex * exp(1j*Ph) Im = numpy.real(ifft2(In)) Im = ifftshift(Im) gsd = filters.getRMScontrast(Im) factor = gsd*self.noiseClip numpy.clip(Im, -factor, factor, Im) self.tex = Im / factor elif self.noiseType in ['normal','Normal']: self.noiseTex = numpy.random.randn(int(self._sideLength[1]),int(self._sideLength[0])) / self.noiseClip elif self.noiseType in ['uniform','Uniform']: self.noiseTex = 2.0 * numpy.random.rand(int(self._sideLength[1]),int(self._sideLength[0])) - 1.0 else: numpy.random.shuffle(self.noiseTex) # pick random noise sample by shuffleing values self.noiseTex = numpy.reshape(self.noiseTex,(int(self._sideLength[1]),int(self._sideLength[0]))) if self.noiseType in ['binary','Binary','normal','Normal','uniform','Uniform']: if self.filter in ['butterworth', 'Butterworth', 'Gabor','gabor','Isotropic','isotropic']: if self.units == 'pix': if self._mysize[0] == self._mysize[1]: baseImage = numpy.array( Image.fromarray(self.noiseTex).resize( (int(self._mysize[0]), int(self._mysize[1])), Image.NEAREST ) ) else: msg = ('NoiseStim can only apply filters to square noise images') raise ValueError(msg) else: baseImage = numpy.array( Image.fromarray(self.noiseTex).resize( (int(self._mysize), int(self._mysize)), Image.NEAREST ) ) baseImage = numpy.array(baseImage).astype( numpy.float32) * 0.0078431372549019607 - 1.0 FT = fft2(baseImage) spectrum = numpy.absolute(fftshift(FT)) angle = numpy.angle(FT) if self.filter in ['butterworth','Butterworth']: spectrum = fftshift(self._filter(spectrum)) elif self.filter in ['isotropic','Isotropic']: spectrum = fftshift(self._isotropic(spectrum)) elif self.filter in ['gabor','Gabor']: spectrum = fftshift(self._gabor(spectrum)) spectrum[0][0] = 0 # set DC to zero FT = spectrum * exp(1j*angle) Im = numpy.real(ifft2(FT)) gsd = filters.getRMScontrast(Im) factor = gsd*self.noiseClip numpy.clip(Im, -factor, factor, Im) self.tex = Im / factor else: if not(self.noiseType in ['image','Image']): self.tex = self.noiseTex
[docs] def buildNoise(self): """build a new noise sample. Required to act on changes to any noise parameters or texRes. """ if self.units == 'pix': if not (self.noiseType in ['Binary','binary','Normal','normal','uniform','Uniform']): mysize = numpy.max(self.size) else: mysize = self.size sampleSize = self.noiseElementSize mysf = self.__dict__['noiseBaseSf']*mysize lowsf = self.noiseFilterLower*numpy.max(mysize) # filter can only be applied to square images anyway upsf = self.noiseFilterUpper*numpy.max(mysize) else: mysize = self.texRes pixSize = self.size/self.texRes sampleSize = self.noiseElementSize/pixSize mysf = self.size[0]*self.noiseBaseSf lowsf = self.size[0]*self.noiseFilterLower upsf = self.size[0]*self.noiseFilterUpper self._mysize = mysize # store for use by updateNoise() self._sf = mysf self._lowsf = lowsf self._upsf = upsf if self.noiseType in ['binary','Binary','normal','Normal','uniform','Uniform']: self._sideLength = numpy.round(mysize/sampleSize) # dummy side length for use when unpacking noise samples in updateNoise() self._sideLength.astype(int) if ((self._sideLength[0] < 2) and (self._sideLength[1] < 2)): msg=('Noise sample size ' 'must result in more than ' '1 sample per image dimension.') raise ValueError(msg) totalSamples = self._sideLength[0]*self._sideLength[1] if self.noiseType in ['binary','Binary']: self.noiseTex=numpy.append(numpy.ones(int(numpy.round(totalSamples/2.0))),-1*numpy.ones(int(numpy.round(totalSamples/2.0)))) elif self.noiseType in ['White','white','filtered','Filtered','isotropic','Isotropic','Gabor','gabor']: self.noiseTex = numpy.ones((int(mysize),int(mysize))) self.noiseTex = fftshift(self.noiseTex) elif self.noiseType in ['Image','image']: if not(self.noiseImage in ['None','none']): im = Image.open(self.noiseImage) im = im.transpose(Image.FLIP_TOP_BOTTOM) im = im.convert("L") # FORCE TO LUMINANCE im = im.resize((int(self._mysize),int(self._mysize)), Image.BILINEAR) intensity = numpy.array(im).astype( numpy.float32) * 0.0078431372549019607 - 1.0 if self.imageComponent in ['phase', 'Phase']: self.noiseTex = numpy.absolute(fftshift(fft2(intensity))) # fftshift here is undone later elif self.imageComponent in ['amplitude', 'Amplitude']: self.noisePh = numpy.angle((fft2(intensity))) # fftshift here is undone later self.noiseTex = numpy.random.uniform(0,1,int(self._mysize**2)) self.noiseTex = numpy.reshape(self.noiseTex,(int(self._mysize),int(self._mysize))) else: raise ValueError("Unknown value for imageComponent in noiseStim") else: self.noiseTex = numpy.ones((int(mysize),int(mysize))) # if image is 'None' will make white noise as temporary measure else: msg = ('Noise type not recognised. Valid types are Binary, Uniform, Normal,' 'White, Filtered, Gabor, Isotropic or Image') raise ValueError(msg) if not(self.noiseType in ['binary','Binary','normal','Normal','uniform','Uniform']): if (self.noiseType in ['filtered','Filtered']) or (self.filter in ['butterworth', 'Butterworth']): self.noiseTex=self._filter(self.noiseTex) elif (self.noiseType in ['Isotropic','isotropic']) or (self.filter in ['isotropic', 'Isotropic']): self.noiseTex = self._isotropic(self.noiseTex) elif (self.noiseType in ['Gabor','gabor']) or (self.filter in ['gabor', 'Gabor']): self.noiseTex = self._gabor(self.noiseTex) self.noiseTex = fftshift(self.noiseTex) self.noiseTex[0][0] = 0 # Set DC to zero self._needBuild = False # prevent noise from being re-built at next draw() unless a parameter is changed in the mean time. self.updateNoise() # now choose the initial random sample.
if __name__ == "__main__": pass

Back to top