/**
* Grating Stimulus.
*
* @author Nikita Agafonov
* @version 2021.2.3
* @copyright (c) 2017-2020 Ilixa Ltd. (http://ilixa.com) (c) 2020-2022 Open Science Tools Ltd. (https://opensciencetools.org)
* @license Distributed under the terms of the MIT License
*/
import * as PIXI from "pixi.js-legacy";
import {AdjustmentFilter} from "@pixi/filter-adjustment";
import { Color } from "../util/Color.js";
import { to_pixiPoint } from "../util/Pixi.js";
import * as util from "../util/Util.js";
import { VisualStim } from "./VisualStim.js";
import defaultQuadVert from "./shaders/defaultQuad.vert";
import imageShader from "./shaders/imageShader.frag";
import sinShader from "./shaders/sinShader.frag";
import sqrShader from "./shaders/sqrShader.frag";
import sawShader from "./shaders/sawShader.frag";
import triShader from "./shaders/triShader.frag";
import sinXsinShader from "./shaders/sinXsinShader.frag";
import sqrXsqrShader from "./shaders/sqrXsqrShader.frag";
import circleShader from "./shaders/circleShader.frag";
import gaussShader from "./shaders/gaussShader.frag";
import crossShader from "./shaders/crossShader.frag";
import radRampShader from "./shaders/radRampShader.frag";
import raisedCosShader from "./shaders/raisedCosShader.frag";
/**
* Grating Stimulus.
*
* @extends VisualStim
*/
export class GratingStim extends VisualStim
{
/**
* An object that keeps shaders source code and default uniform values for them.
* Shader source code is later used for construction of shader programs to create respective visual stimuli.
*
* @type {Object}
* @property {Object} imageShader - Renders provided image with applied effects (coloring, phase, frequency).
* @property {String} imageShader.shader - shader source code for the image based grating stimuli.
* @property {Object} imageShader.uniforms - default uniforms for the image based shader.
* @property {float} imageShader.uniforms.uFreq=1.0 - how much times image repeated within grating stimuli.
* @property {float} imageShader.uniforms.uPhase=0.0 - offset of the image along X axis.
* @property {float} imageShader.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} sin - Creates 2d sine wave image as if 1d sine graph was extended across Z axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Sine_wave}
* @property {String} sin.shader - shader source code for the sine wave stimuli
* @property {Object} sin.uniforms - default uniforms for sine wave shader
* @property {float} sin.uniforms.uFreq=1.0 - frequency of sine wave.
* @property {float} sin.uniforms.uPhase=0.0 - phase of sine wave.
* @property {float} sin.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} sqr - Creates 2d square wave image as if 1d square graph was extended across Z axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Square_wave}
* @property {String} sqr.shader - shader source code for the square wave stimuli
* @property {Object} sqr.uniforms - default uniforms for square wave shader
* @property {float} sqr.uniforms.uFreq=1.0 - frequency of square wave.
* @property {float} sqr.uniforms.uPhase=0.0 - phase of square wave.
* @property {float} sqr.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} saw - Creates 2d sawtooth wave image as if 1d sawtooth graph was extended across Z axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Sawtooth_wave}
* @property {String} saw.shader - shader source code for the sawtooth wave stimuli
* @property {Object} saw.uniforms - default uniforms for sawtooth wave shader
* @property {float} saw.uniforms.uFreq=1.0 - frequency of sawtooth wave.
* @property {float} saw.uniforms.uPhase=0.0 - phase of sawtooth wave.
* @property {float} saw.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} tri - Creates 2d triangle wave image as if 1d triangle graph was extended across Z axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Triangle_wave}
* @property {String} tri.shader - shader source code for the triangle wave stimuli
* @property {Object} tri.uniforms - default uniforms for triangle wave shader
* @property {float} tri.uniforms.uFreq=1.0 - frequency of triangle wave.
* @property {float} tri.uniforms.uPhase=0.0 - phase of triangle wave.
* @property {float} tri.uniforms.uPeriod=1.0 - period of triangle wave.
* @property {float} tri.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} sinXsin - Creates an image of two 2d sine waves multiplied with each other.
* {@link https://en.wikipedia.org/wiki/Sine_wave}
* @property {String} sinXsin.shader - shader source code for the two multiplied sine waves stimuli
* @property {Object} sinXsin.uniforms - default uniforms for shader
* @property {float} sinXsin.uniforms.uFreq=1.0 - frequency of sine wave (both of them).
* @property {float} sinXsin.uniforms.uPhase=0.0 - phase of sine wave (both of them).
* @property {float} sinXsin.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} sqrXsqr - Creates an image of two 2d square waves multiplied with each other.
* {@link https://en.wikipedia.org/wiki/Square_wave}
* @property {String} sqrXsqr.shader - shader source code for the two multiplied sine waves stimuli
* @property {Object} sqrXsqr.uniforms - default uniforms for shader
* @property {float} sqrXsqr.uniforms.uFreq=1.0 - frequency of sine wave (both of them).
* @property {float} sqrXsqr.uniforms.uPhase=0.0 - phase of sine wave (both of them).
* @property {float} sqrXsqr.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} circle - Creates a filled circle shape with sharp edges.
* @property {String} circle.shader - shader source code for filled circle.
* @property {Object} circle.uniforms - default uniforms for shader.
* @property {float} circle.uniforms.uRadius=1.0 - Radius of the circle. Ranges [0.0, 1.0], where 0.0 is circle so tiny it results in empty stim
* and 1.0 is circle that spans from edge to edge of the stim.
* @property {float} circle.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} gauss - Creates a 2d Gaussian image as if 1d Gaussian graph was rotated arount Y axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Gaussian_function}
* @property {String} gauss.shader - shader source code for Gaussian shader
* @property {Object} gauss.uniforms - default uniforms for shader
* @property {float} gauss.uniforms.uA=1.0 - A constant for gaussian formula (see link).
* @property {float} gauss.uniforms.uB=0.0 - B constant for gaussian formula (see link).
* @property {float} gauss.uniforms.uC=0.16 - C constant for gaussian formula (see link).
* @property {float} gauss.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} cross - Creates a filled cross shape with sharp edges.
* @property {String} cross.shader - shader source code for cross shader
* @property {Object} cross.uniforms - default uniforms for shader
* @property {float} cross.uniforms.uThickness=0.2 - Thickness of the cross. Ranges [0.0, 1.0], where 0.0 thickness makes a cross so thin it becomes
* invisible and results in an empty stim and 1.0 makes it so thick it fills the entire stim.
* @property {float} cross.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} radRamp - Creates 2d radial ramp image.
* @property {String} radRamp.shader - shader source code for radial ramp shader
* @property {Object} radRamp.uniforms - default uniforms for shader
* @property {float} radRamp.uniforms.uSqueeze=1.0 - coefficient that helps to modify size of the ramp. Ranges [0.0, Infinity], where 0.0 results in ramp being so large
* it fills the entire stim and Infinity makes it so tiny it's invisible.
* @property {float} radRamp.uniforms.uAlpha=1.0 - value of the alpha channel.
*
* @property {Object} raisedCos - Creates 2d raised-cosine image as if 1d raised-cosine graph was rotated around Y axis and observed from above.
* {@link https://en.wikipedia.org/wiki/Raised-cosine_filter}
* @property {String} raisedCos.shader - shader source code for raised-cosine shader
* @property {Object} raisedCos.uniforms - default uniforms for shader
* @property {float} raisedCos.uniforms.uBeta=0.25 - roll-off factor (see link).
* @property {float} raisedCos.uniforms.uPeriod=0.625 - reciprocal of the symbol-rate (see link).
* @property {float} raisedCos.uniforms.uAlpha=1.0 - value of the alpha channel.
*/
static #SHADERS = {
imageShader: {
shader: imageShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
sin: {
shader: sinShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
sqr: {
shader: sqrShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
saw: {
shader: sawShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
tri: {
shader: triShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uPeriod: 1.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
sinXsin: {
shader: sinXsinShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
sqrXsqr: {
shader: sqrXsqrShader,
uniforms: {
uFreq: 1.0,
uPhase: 0.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
circle: {
shader: circleShader,
uniforms: {
uRadius: 1.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
gauss: {
shader: gaussShader,
uniforms: {
uA: 1.0,
uB: 0.0,
uC: 0.16,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
cross: {
shader: crossShader,
uniforms: {
uThickness: 0.2,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
radRamp: {
shader: radRampShader,
uniforms: {
uSqueeze: 1.0,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
},
raisedCos: {
shader: raisedCosShader,
uniforms: {
uBeta: 0.25,
uPeriod: 0.625,
uColor: [1., 1., 1.],
uAlpha: 1.0
}
}
};
/**
* Default size of the Grating Stimuli in pixels.
*
* @type {Array}
* @default [256, 256]
*/
static #DEFAULT_STIM_SIZE_PX = [256, 256]; // in pixels
static #BLEND_MODES_MAP = {
avg: PIXI.BLEND_MODES.NORMAL,
add: PIXI.BLEND_MODES.ADD,
mul: PIXI.BLEND_MODES.MULTIPLY,
screen: PIXI.BLEND_MODES.SCREEN
};
/**
* @memberOf module:visual
* @param {Object} options
* @param {String} options.name - the name used when logging messages from this stimulus
* @param {Window} options.win - the associated Window
* @param {String | HTMLImageElement} [options.tex="sin"] - the name of the predefined grating texture or image resource or the HTMLImageElement corresponding to the texture
* @param {String | HTMLImageElement} [options.mask] - the name of the mask resource or HTMLImageElement corresponding to the mask
* @param {String} [options.units= "norm"] - the units of the stimulus (e.g. for size, position, vertices)
* @param {number} [options.sf=1.0] - spatial frequency of the function used in grating stimulus
* @param {number} [options.phase=0.0] - phase of the function used in grating stimulus, multiples of period of that function
* @param {Array.<number>} [options.pos= [0, 0]] - the position of the center of the stimulus
* @param {number} [options.ori= 0.0] - the orientation (in degrees)
* @param {number} [options.size] - the size of the rendered image (DEFAULT_STIM_SIZE_PX will be used if size is not specified)
* @param {Color} [options.color= "white"] - Foreground color of the stimulus. Can be String like "red" or "#ff0000" or Number like 0xff0000.
* @param {number} [options.opacity= 1.0] - Set the opacity of the stimulus. Determines how visible the stimulus is relative to background.
* @param {number} [options.contrast= 1.0] - Set the contrast of the stimulus, i.e. scales how far the stimulus deviates from the middle grey. Ranges [-1, 1].
* @param {number} [options.depth= 0] - the depth (i.e. the z order)
* @param {boolean} [options.interpolate= false] - Whether to interpolate (linearly) the texture in the stimulus. Currently supports only image based gratings.
* @param {String} [options.blendmode= "avg"] - blend mode of the stimulus, determines how the stimulus is blended with the background. Supported values: "avg", "add", "mul", "screen".
* @param {boolean} [options.autoDraw= false] - whether or not the stimulus should be automatically drawn on every frame flip
* @param {boolean} [options.autoLog= false] - whether or not to log
*/
constructor({
name,
tex = "sin",
win,
mask,
pos,
units,
sf = 1.0,
ori,
phase,
size,
color,
colorSpace,
opacity,
contrast = 1,
depth,
interpolate,
blendmode,
autoDraw,
autoLog,
maskParams
} = {})
{
super({ name, win, units, ori, opacity, depth, pos, size, autoDraw, autoLog });
this._adjustmentFilter = new AdjustmentFilter({
contrast
});
this._addAttribute("tex", tex);
this._addAttribute("mask", mask);
this._addAttribute("SF", sf, GratingStim.#SHADERS[tex] ? GratingStim.#SHADERS[tex].uniforms.uFreq || 1.0 : 1.0);
this._addAttribute("phase", phase, GratingStim.#SHADERS[tex] ? GratingStim.#SHADERS[tex].uniforms.uPhase || 0.0 : 0.0);
this._addAttribute("color", color, "white");
this._addAttribute("colorSpace", colorSpace, "RGB");
this._addAttribute("contrast", contrast, 1.0, () => {
this._adjustmentFilter.contrast = this._contrast;
});
this._addAttribute("blendmode", blendmode, "avg");
this._addAttribute("interpolate", interpolate, false);
// estimate the bounding box:
this._estimateBoundingBox();
if (this._autoLog)
{
this._psychoJS.experimentLogger.exp(`Created ${this.name} = ${this.toString()}`);
}
if (!Array.isArray(this.size) || this.size.length === 0) {
this.size = util.to_unit(GratingStim.#DEFAULT_STIM_SIZE_PX, "pix", this.win, this.units);
}
this._size_px = util.to_px(this.size, this.units, this.win);
}
/**
* Setter for the tex attribute.
*
* @param {HTMLImageElement | string} tex - the name of built in shader function or name of the image resource or HTMLImageElement corresponding to the image
* @param {boolean} [log= false] - whether of not to log
*/
setTex(tex, log = false)
{
const response = {
origin: "GratingStim.setTex",
context: "when setting the tex of GratingStim: " + this._name,
};
try
{
let hasChanged = false;
// tex is undefined: that's fine but we raise a warning in case this is a symptom of an actual problem
if (typeof tex === "undefined")
{
this.psychoJS.logger.warn("setting the tex of GratingStim: " + this._name + " with argument: undefined.");
this.psychoJS.logger.debug("set the tex of GratingStim: " + this._name + " as: undefined");
}
else if (GratingStim.#SHADERS[tex] !== undefined)
{
// tex is a string and it is one of predefined functions available in shaders
this.psychoJS.logger.debug("the tex is one of predefined functions. Set the tex of GratingStim: " + this._name + " as: " + tex);
const curFuncName = this.getTex();
hasChanged = curFuncName ? curFuncName !== tex : true;
}
else
{
// tex is a string: it should be the name of a resource, which we load
if (typeof tex === "string")
{
tex = this.psychoJS.serverManager.getResource(tex);
}
// tex should now be an actual HTMLImageElement: we raise an error if it is not
if (!(tex instanceof HTMLImageElement))
{
throw "the argument: " + tex.toString() + " is not an image\" }";
}
this.psychoJS.logger.debug("set the tex of GratingStim: " + this._name + " as: src= " + tex.src + ", size= " + tex.width + "x" + tex.height);
const existingImage = this.getTex();
hasChanged = existingImage ? existingImage.src !== tex.src : true;
}
this._setAttribute("tex", tex, log);
if (hasChanged)
{
this._onChange(true, true)();
}
}
catch (error)
{
throw Object.assign(response, { error });
}
}
/**
* Setter for the mask attribute.
*
* @param {HTMLImageElement | string} mask - the name of the mask resource or HTMLImageElement corresponding to the mask
* @param {boolean} [log= false] - whether of not to log
*/
setMask(mask, log = false)
{
const response = {
origin: "GratingStim.setMask",
context: "when setting the mask of GratingStim: " + this._name,
};
try
{
// mask is undefined: that's fine but we raise a warning in case this is a sympton of an actual problem
if (typeof mask === "undefined")
{
this.psychoJS.logger.warn("setting the mask of GratingStim: " + this._name + " with argument: undefined.");
this.psychoJS.logger.debug("set the mask of GratingStim: " + this._name + " as: undefined");
}
else if (GratingStim.#SHADERS[mask] !== undefined)
{
// mask is a string and it is one of predefined functions available in shaders
this.psychoJS.logger.debug("the mask is one of predefined functions. Set the mask of GratingStim: " + this._name + " as: " + mask);
}
else
{
// mask is a string: it should be the name of a resource, which we load
if (typeof mask === "string")
{
mask = this.psychoJS.serverManager.getResource(mask);
}
// mask should now be an actual HTMLImageElement: we raise an error if it is not
if (!(mask instanceof HTMLImageElement))
{
throw "the argument: " + mask.toString() + " is not an image\" }";
}
this.psychoJS.logger.debug("set the mask of GratingStim: " + this._name + " as: src= " + mask.src + ", size= " + mask.width + "x" + mask.height);
}
this._setAttribute("mask", mask, log);
this._onChange(true, false)();
}
catch (error)
{
throw Object.assign(response, { error });
}
}
/**
* Get the size of the display image, which is either that of the GratingStim or that of the image
* it contains.
*
* @protected
* @return {number[]} the size of the displayed image
*/
_getDisplaySize()
{
let displaySize = this.size;
if (typeof displaySize === "undefined")
{
// use the size of the pixi element, if we have access to it:
if (typeof this._pixi !== "undefined" && this._pixi.width > 0)
{
const pixiContainerSize = [this._pixi.width, this._pixi.height];
displaySize = util.to_unit(pixiContainerSize, "pix", this.win, this.units);
}
}
return displaySize;
}
/**
* Estimate the bounding box.
*
* @override
* @protected
*/
_estimateBoundingBox()
{
const size = this._getDisplaySize();
if (typeof size !== "undefined")
{
this._boundingBox = new PIXI.Rectangle(
this._pos[0] - size[0] / 2,
this._pos[1] - size[1] / 2,
size[0],
size[1],
);
}
// TODO take the orientation into account
}
/**
* Generate PIXI.Mesh object based on provided shader function name and uniforms.
*
* @protected
* @param {String} shaderName - name of the shader. Must be one of the SHADERS
* @param {Object} uniforms - a set of uniforms to supply to the shader. Mixed together with default uniform values.
* @return {Pixi.Mesh} Pixi.Mesh object that represents shader and later added to the scene.
*/
_getPixiMeshFromPredefinedShaders (shaderName = "", uniforms = {}) {
const geometry = new PIXI.Geometry();
geometry.addAttribute(
"aVertexPosition",
[
0, 0,
this._size_px[0], 0,
this._size_px[0], this._size_px[1],
0, this._size_px[1]
],
2
);
geometry.addAttribute(
"aUvs",
[0, 0, 1, 0, 1, 1, 0, 1],
2
);
geometry.addIndex([0, 1, 2, 0, 2, 3]);
const vertexSrc = defaultQuadVert;
const fragmentSrc = GratingStim.#SHADERS[shaderName].shader;
const uniformsFinal = Object.assign({}, GratingStim.#SHADERS[shaderName].uniforms, uniforms);
const shader = PIXI.Shader.from(vertexSrc, fragmentSrc, uniformsFinal);
return new PIXI.Mesh(geometry, shader);
}
/**
* Set phase value for the function.
*
* @param {number} phase - phase value
* @param {boolean} [log= false] - whether of not to log
*/
setPhase (phase, log = false) {
this._setAttribute("phase", phase, log);
if (this._pixi instanceof PIXI.Mesh) {
this._pixi.shader.uniforms.uPhase = -phase;
}
}
/**
* Set color space value for the grating stimulus.
*
* @param {String} colorSpaceVal - color space value
* @param {boolean} [log= false] - whether of not to log
*/
setColorSpace (colorSpaceVal = "RGB", log = false) {
let colorSpaceValU = colorSpaceVal.toUpperCase();
if (Color.COLOR_SPACE[colorSpaceValU] === undefined) {
colorSpaceValU = "RGB";
}
const hasChanged = this._setAttribute("colorSpace", colorSpaceValU, log);
if (hasChanged) {
this.setColor(this._color);
}
}
/**
* Set foreground color value for the grating stimulus.
*
* @param {Color} colorVal - color value, can be String like "red" or "#ff0000" or Number like 0xff0000.
* @param {boolean} [log= false] - whether of not to log
*/
setColor (colorVal = "white", log = false) {
const colorObj = (colorVal instanceof Color) ? colorVal : new Color(colorVal, Color.COLOR_SPACE[this._colorSpace])
this._setAttribute("color", colorObj, log);
if (this._pixi instanceof PIXI.Mesh) {
this._pixi.shader.uniforms.uColor = colorObj.rgbFull;
}
}
/**
* Determines how visible the stimulus is relative to background.
*
* @param {number} [opacity=1] opacity - The value should be a single float ranging 1.0 (opaque) to 0.0 (transparent).
* @param {boolean} [log= false] - whether of not to log
*/
setOpacity (opacity = 1, log = false) {
this._setAttribute("opacity", opacity, log);
if (this._pixi instanceof PIXI.Mesh) {
this._pixi.shader.uniforms.uAlpha = opacity;
}
}
/**
* Set spatial frequency value for the function.
*
* @param {number} sf - spatial frequency value
* @param {boolean} [log=false] - whether or not to log
*/
setSF (sf, log = false) {
this._setAttribute("SF", sf, log);
if (this._pixi instanceof PIXI.Mesh) {
this._pixi.shader.uniforms.uFreq = sf;
}
}
/**
* Set blend mode of the grating stimulus.
*
* @param {String} blendMode - blend mode, can be one of the following: ["avg", "add", "mul", "screen"].
* @param {boolean} [log=false] - whether or not to log
*/
setBlendmode (blendMode = "avg", log = false) {
this._setAttribute("blendmode", blendMode, log);
if (this._pixi !== undefined) {
let pixiBlendMode = GratingStim.#BLEND_MODES_MAP[blendMode];
if (pixiBlendMode === undefined) {
pixiBlendMode = PIXI.BLEND_MODES.NORMAL;
}
if (this._pixi.filters) {
this._pixi.filters[this._pixi.filters.length - 1].blendMode = pixiBlendMode;
} else {
this._pixi.blendMode = pixiBlendMode;
}
}
}
/**
* Whether to interpolate (linearly) the texture in the stimulus.
*
* @param {boolean} interpolate - interpolate or not.
* @param {boolean} [log=false] - whether or not to log
*/
setInterpolate (interpolate = false, log = false) {
this._setAttribute("interpolate", interpolate, log);
if (this._pixi instanceof PIXI.Mesh && this._pixi.shader.uniforms.uTex instanceof PIXI.Texture) {
this._pixi.shader.uniforms.uTex.baseTexture.scaleMode = interpolate ? PIXI.SCALE_MODES.LINEAR : PIXI.SCALE_MODES.NEAREST;
this._pixi.shader.uniforms.uTex.baseTexture.update();
}
}
/**
* Update the stimulus, if necessary.
*
* @protected
*/
_updateIfNeeded()
{
if (!this._needUpdate)
{
return;
}
this._needUpdate = false;
// update the PIXI representation, if need be:
if (this._needPixiUpdate)
{
this._needPixiUpdate = false;
let shaderName;
let shaderUniforms;
let currentUniforms = {};
if (typeof this._pixi !== "undefined")
{
if (this._pixi instanceof PIXI.Mesh) {
Object.assign(currentUniforms, this._pixi.shader.uniforms);
}
this._pixi.destroy(true);
}
this._pixi = undefined;
// no image to draw: return immediately
if (typeof this._tex === "undefined")
{
return;
}
if (this._tex instanceof HTMLImageElement)
{
// Not using PIXI.Texture.from() on purpose, as it caches both PIXI.Texture and PIXI.BaseTexture.
// As a result of that we can have multiple GratingStim instances using same PIXI.BaseTexture,
// thus changing texture related properties like interpolation, or calling _pixi.destroy(true)
// will affect all GratingStims who happen to share that BaseTexture.
shaderName = "imageShader";
let shaderTex = new PIXI.Texture(new PIXI.BaseTexture(this._tex, {
wrapMode: PIXI.WRAP_MODES.REPEAT,
scaleMode: this._interpolate ? PIXI.SCALE_MODES.LINEAR : PIXI.SCALE_MODES.NEAREST
}));
shaderUniforms = {
uTex: shaderTex,
uFreq: this._SF,
uPhase: this._phase,
uColor: this._color.rgbFull
};
}
else
{
shaderName = this._tex;
shaderUniforms = {
uFreq: this._SF,
uPhase: this._phase,
uColor: this._color.rgbFull
};
}
this._pixi = this._getPixiMeshFromPredefinedShaders(shaderName, Object.assign(shaderUniforms, currentUniforms));
this._pixi.pivot.set(this._pixi.width * 0.5, this._pixi.width * 0.5);
this._pixi.filters = [this._adjustmentFilter];
// add a mask if need be:
if (typeof this._mask !== "undefined")
{
if (this._mask instanceof HTMLImageElement)
{
// Building new PIXI.BaseTexture each time we create a mask. See notes on shader texture creation above.
this._pixi.mask = PIXI.Sprite.from(new PIXI.Texture(new PIXI.BaseTexture(this._mask)));
this._pixi.mask.width = this._size_px[0];
this._pixi.mask.height = this._size_px[1];
this._pixi.addChild(this._pixi.mask);
}
else
{
// for some reason setting PIXI.Mesh as .mask doesn't do anything,
// rendering mask to texture for further use.
const maskMesh = this._getPixiMeshFromPredefinedShaders(this._mask);
const rt = PIXI.RenderTexture.create({
width: this._size_px[0],
height: this._size_px[1]
});
this.win._renderer.render(maskMesh, {
renderTexture: rt
});
const maskSprite = new PIXI.Sprite.from(rt);
this._pixi.mask = maskSprite;
this._pixi.addChild(maskSprite);
}
}
// since _pixi.width may not be immediately available but the rest of the code needs its value
// we arrange for repeated calls to _updateIfNeeded until we have a width:
if (this._pixi.width === 0)
{
this._needUpdate = true;
this._needPixiUpdate = true;
return;
}
}
this._pixi.zIndex = -this._depth;
this.opacity = this._opacity;
// set the scale:
const displaySize = this._getDisplaySize();
this._size_px = util.to_px(displaySize, this.units, this.win);
const scaleX = this._size_px[0] / this._pixi.width;
const scaleY = this._size_px[1] / this._pixi.height;
this._pixi.scale.x = this.flipHoriz ? -scaleX : scaleX;
this._pixi.scale.y = this.flipVert ? scaleY : -scaleY;
// set the position, rotation, and anchor (image centered on pos):
let pos = to_pixiPoint(this.pos, this.units, this.win);
this._pixi.position.set(pos.x, pos.y);
this._pixi.rotation = -this.ori * Math.PI / 180;
// re-estimate the bounding box, as the texture's width may now be available:
this._estimateBoundingBox();
}
}